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Sufficient conditions for local stability of invariant sets in non-linear discrete systems with time-varying 

parameters and difference inclusions are investigated. The results obtained are a step towards 

establishing an analogue of Lyapunov’s First Method for the systems under consideration. 

This work is related to investigations in robust stability theory [l, 21. 
Most results for the stability of non-linear discrete inclusions are formulated using a 

Lyapunov function, and the problem of justifying an analogue of Lyapunov’s First Method for 
these systems remains open. The use of the idea of this method to investigate non-linear 
systems with unknown time-varying parameters encounters some difficulties of principle. First, 
it is necessary to clarify the concept of “linearization” when applied to a multivalued right- 
hand side in the equation specifying the system behaviour. In general, this problem belongs to 
the field of multivalued mapping analysis and admits of several different approaches [3, 41. 
Second, in the systems under consideration the equilibrium position is also, generally speak 
ing, not unique, and it makes no sense to talk about stationary solutions, but only about 
stationary sets of solutions, which need not be identical with the set of all equilibrium positions. 
Thus the system must be “linearized” in the neighbourhood of a set rather than a point, which 
hinders or renders impossible the use of what is now the well-developed concept of a linear 
approximation to a multivalued mapping in the neighbourhood of a point on its graph. 

1. SETS OF STATIONARY SOLUTIONS AND INVARIANT SETS 
OF DISCRETE SYSTEMS 

Consider a non-linear discrete dynamical system of the form 

xi+l =.f(X;9 Si>9 S;E E (1.1) 

Here X, ER” is the system phase-state vector, the si E R” are unknown time-varying 
parameters, and i = 1, 2, . . . throughout. In all cases it is assumed that the function f(., .): R” x 
R” + R” is continuous and the set Z c R”’ of allowed parameter values is compact. 

As a generalization of (1.1) we consider the difference inclusion 

x;+l E F(xi) (1.2) 

where F(.) is a given multivalued mapping which is semicontinuous from above and takes 
compact values. In particular, (1.1) can be represented in the form (1.2) with F(x)= f(x, 
a> = +J(X’ 5). 
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The special case of system (1.1) when the parameters are constant, i.e. ci = 5 E 8, is of 
particular interest. In this case (1.1) can be transformed to the form 

Yi+t = g(yi), Yi = (xi, ki> E R” X Rm (1.3) 
y1 E R” x E, gcY) = cf(x, 5>,5> E R” x Rm 

In (1.3) the indeterminancy in the specification of the right-hand sides is turned into 
indeterminacy in the initial condition. 

Let y” =(x0, 4”) be a stationary point of (1.3), y” =g(y”). Here it is obvious that x0 is a 
stationary solution for system (1.1) with the condition ci =I;‘. We consider the set of all 
possible solutions of this form 

Under the given conditions X,S is a closed set, and when it is not empty its robust stability is of 
interest. 

Definition 1.1. The closed set X is called robustly asymptotically stable (after Lyapunov) with 
respect to the stationary system (1.1) if for any E > 0 a 6 > 0 exists such that for any solution 
yi = (xi, E,) of system (1.1) satisfying the conditions d(x,, X) < 6, 5 E E, the relations 

d(Xi, X) < E, d(Xi, X) + 0, i + CsJ (1.5) 

hold, where (d(x, X) = inf(llx- z II: z E X} is the distance from the point x to the set X. 

We remark that the robust stability of the entire set Xi does not, in general, follow from the asymp- 

totic stability (in projection onto R”) of each of the stationary solutions. We will demonstrate the validity 
of this assertion by the following simple example. 

Example 1.1. Let n = 1, E = {0, l] and x,+i = & + 1. 

If 5 =0 we have x0 = 1 as an asymptotically stable solution, whereas if 5= 1 this system has no 

stationary solutions. Hence Xi = [l]. It is obvious that by Definition 1.1 this point is not robustly stable. 
On the other hand, the following example shows that a stable set Xi does not necessarily consist of 

asymptotically stable stationary solutions. 

Example 1.2. Suppose that tl= 1, E = [-1, 11 and 

Xi+1 = Cp(Xi) + 5, Cp(X) = 4X( 1 + LXl)-’ 

One can show that in this case Xi =[-(2+&), (2+&)] IS robustly stable. At the same time, when 

5 = 0 the point x = 0 is an unstable position of equilibrium. 
The set Xi consists of equilibrium positions of system (1.1) under the condition that the parameters ci 

do not change over time. Here its construction is a relatively clear matter, at least from the formal 
algorithmic point of view. However, from Definition 1.1 it can be seen that for an arbitrary set X to be 
robustly stable the inclusion [S] 

must be satisfied. 
Thus sets that are invariant under (1.1) can only be robustly stable when the condition that the 

parameters & should be stationary is not essential to their definition. With reference to this we investigate 
below the asymptotic stability of invariant sets of systems (1.1) and (1.2). It should be noted that the 
construction of non-trivial invariant sets is undoubtedly a more complicated problem, the discussion of 
which goes beyond the scope of this paper. 

We will identify a special class of invariant sets which extends the concept of a stationary 
solution. 
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Definition 1.2. A closed set X,, is a stationary set (SS) of system (l.l), (1.2) if the equality 

(1.6) 

is satisfied. 
Relation (1.6) does not define a unique SS. In particular, a union of SSs is itself an SS. To 

eliminate this uncertainty we introduce the following definition. 

Definition 1.3. An SS is called minimal if none of its proper subsets is an SS. 
The problem of the existence of a non-empty SS can be solved using fixed point existence 

theorems for mappings defined in the space of compact (or closed) sets in R”. We will not 
dwell on this range of problems, but formulate a single existence criterion which does not use 
fixed-point theorems and is based on a qualitative characteristic of dynamical systems. 

Theorem 1.1. Suppose a non-empty set 2, exists such that all solutions of (1.2) that begin in 
this set remain in some compact set (i.e. the system is dissipative in Z,, [6]). Then system (1.2) 
has a non-empty compact minimal SS. 

We will only sketch the proof of this theorem. It can be divided into two stages. We first 
establish that under the conditions of the theorem a non-empty compact invariant set Y exists. 
To justify this statement it is sufficient to put 

Y=limXi, Xi+, =F(Xi)* X* =Z, 
i-w- 

where ii&=X, defines the upper limit of a sequence of compact sets in R”. [4] 
The subsequent stage of the proof is essentially non-constructive and is based on Zorn’s 

lemma [7]. On the set of compact sets invariant under (1.2) we introduce the relation of 
ordering by inclusion. Every linearly ordered subset (Y,) of this set has a minimal element 
Y, = n,Y, z cp. Hence a minimal compact invariant set exists which is an SS of system (1.2). 

Remark 1.1. In the terminology that has been introduced, Maschler and Peleg [S] investigate, in 
particular, the question of whether all minimal SSs are single-point sets. 

It should also be noted that expressions (1.4) and (1.6) lead to different sets which can be variously 
related to one another. We will illustrate the validity of this assertion by two one-dimensional examples. 

Example 1.3. Suppose xi+r = xi 12+5,, B = I-1, 0,l). 
Then if X: = (-2, 0,2) and X, = [-2, 21, i.e. Xi # X,, Xi c X,. 

Example 1.4. Suppose that 

(x--1)2, x>l 

ri+t = Cp(Xi) + 5i9 E=[-1, 11. cp(x)= 

i 

0, xE[--l,l] 

-(x+1)2, xc-l 

In this case Xi =[-3, -2]u[-1, l]u[2, 31 and X, = [-1, 11. Therefore X, is a subset of Xi. 
We also note that the set Xi of stationary solutions invariant under (1.1) is an SS. Investigation of the 

stability of SSs therefore enables one to draw conclusions on the stability of sets of stationary solutions. 
With reference to this, in the following we shall not use the condition that the parameters in (1.1) are 

stationary. 

Definition 1.4. A non-empty, closed, invariant set X, is called strongly asymptotically stable 
(after Lyapunov) with respect to (1.1) ((1.2)) if for any E > 0 a 6 > 0 exists such that all traject- 
ories of system (l.l), ((1.2)) starting from a point x0, d(x’, X0) -C 6 satisfy conditions (1.5). 

2. STABILITY IN THE FIRST APPROXIMATION 

We will study the sufficiency conditions for the stability of invariant sets of system (1.1) 
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which can be formulated in terms characterizing the stability of a “linearized” system. The 
nature of the result obtained is not unexpected, but we are not aware of analogues of the 
theorem given below. 

Theorem 2.1. Let X0 be a compact, invariant set of system (1.1) and let bdX,, = X0 \(intX,,) 
be its boundary. We assume that in some neighbourhood of the boundary bdX, the function 
f(x, 5) is continuously differentiable with respect to x, uniformly in 5, so that 

f(x+u,~)=f(x,5>+f:(x,5>u+llull~(X,5,U) (2.1) 

where T(X, 5, U) -+ 0 uniformly in (x, 5) E (bdX,) xE as u + 0. 
If the inequality II f:(x, 5) II< 1 is satisfied for all x E bdX, and E, E B, the set X,, is strongly 

asymptotically stable relative to (1.1). (Here and below the matrix norm is assumed to be 
consistent with the vector norm on R”.) 

Proof. Let E > 0 and 

p=max{llf’(x,E,)ll: (x,E,)~(bdX~)xE} (2.2) 

By the conditions of the theorem one can choose a number 6, 0~6~ E such that 

p + lb-(x, 5, u)ll s v < 1 (2.3) 

for all XE bdXO, E,EE, Ilu II< 6. We assume that d(x’, X0) ~6 and that (xi) is an arbitrary 
trajectory of system (1.1) which begins at the point x0, with an associated sequence of undefin- 
ed parameters 5, E 8, i.e. 

xi+l =_Rxi* ci>, XI =P (2.4) 

We construct a recursively defined sequence of points S, E bdX, satisfying the inequalities 

llrj - Sill d Vi-‘6 (2.5) 

which completes the proof of the theorem. For s, we choose an arbitrary point of bdX, for 
which 

IL@ - Sill = d(x0, X,) < 6 

We assume that points s,, . . . , s, which lie on the boundary of the set X0 and satisfy 
inequalities (2.5) have been constructed. By virtue of (2.1)-(2.5) the z, = f(s,, 5,) satisfy the 
estimates 

11x,+, -z,ll=ll(f:(s,,5,)(x, -s,)+llx[ -sJlr(S,,~,,x[ -S[))IIc 

c (llf;(s[,~~)ll+llr(s,,~,,x, -S,)ll)llX, -s,llC 

S (p+IIr(sI,r&x, -S,)ll)V’%d v’6 

The set X0 is invariant, and therefore z, E X0. Hence one can find a point s[+~ E bdX, for 
which the inequality II x,+~ - s[+~ II= dx(x,+,, X0) 41 x,+~ - z, II is satisfied. 

The theorem is proved. 

Remark 2.1. Because the Lyapunov stability property does not depend on the choice of norm on R”, 

and to every matrix norm there corresponds a vector norm that is consistent with it [8], Theorem 2.1 

holds for an arbitrary choice of matrix norm. 

Taking this remark into consideration, one can assert that Theorem 2.1 directly extends the standard 

Lyapunov asymptotic stability condition for an equilibrium position of a non-linear stationary system 
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without undefined parameters. Indeed, according to Theorem 2.1 the point x0 E R”, x0 = f(x”) will be an 

asymptotically stable,equilibrium position for the system xi+1 = f(xi) if some matrix norm of the Jacobian 

f’(x’) is less than unity. Because the spectral radius of an arbitrary matrix can be as closely approximated 
as desired by some norm of this matrix consistent with the vector norm on R” [9], the conclusion of the 
theorem is equivalent to the fact that all the eigenvalues of the matrix f’(x”) lie inside the unit circle of 
the complex plane. 

We consider some examples which illustrate the assertion. 

Example 2.1. Let n = 1. We consider positive solutions of the system 

xj+t =f(xi* 5;) = SCp(Xi)* X1 > 0 

cp(x) = 2x(M + 1)-t, B = [a, PI, (l/2) c a c p 

The positive asymptotically stable equilibrium positions of this system form the interval Xi = [2a- 1, 

2p - 11. Indeed, for x(c) = 25 - 1 the relations 

x(S) = f(x(S)J39 f;(x(5).5) = (25)-l < 1 

hold. 

Under the given assumptions Xi is an SS, and by Theorem 2.1 its strong stability is ensured if the 
inequality 

is satisfied. 

Example 2.2. Consider an impulsive implementation of a simple servomechanism 

x’(r) = k(u(t) -x(r)), r 2 0 (2.6) 

where u(.) is the input and 4.) is the output signal, and k > 0 is the gain. We assume that the rate of 
change of the input signal u(t)=E,(t) is not known exactly and can vary between the limits -8 and 6, 
6 > 0. If measurements of the input signal are made at discrete times ti, then the discrete implementation 
of (2.6) leads to the difference equation 

X(fi+l) = -k(ti+] - ri)(x(ri) - Mfi)) + -dri) 

Introducing the error e, = x(t,) -u(t,), we obtain 

ei+l = (1 - k&i)ei + &Ati (2.7) 

where (-5,) E[-8, 81 is the mean rate of change of the input signal over the interval [fi+l, t,], and 

Afi = ti+l - t, is the length of this interval. 
If At, = z = const, we obtain 

ei+l = Kei + &7, K = 1 - kr, si E [4* 61 (2.8) 

The set Ei of stationary solutions of (2.8) is identical with the interval [-6/k, 6/k], which is an 
invariant set when KS 1. One can show that when -1 <KC 0 the interval E, =(~/2-kz))[-6, 61 is a 
minimal SS of system (2.8). By Theorem 2.1 these sets are asymptotically stable when kz G 1 and kr < 2 
respectively. When K L -1 system (2.8) has no compact invariant sets. 

We will now assume that pulse-frequency modulation is used, for which the length of the interval [t,, 
tic,] is a function of the error e,, i.e. At, = r(e,). In this case (2.7) is transformed to the form 
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ei+l =f(ei, &I = (1 - Wei)ki + t$(ei) (2.9) 

The set of stationary solutions Ei does not change when passing from (2.8) to (2.9), although 

investigation of its invariance conditions requires very cumbersome calculations. Without going into the 
detail of these calculations, which can be performed for specific functions r(,), we note that on the basis of 
Theorem 2.1 the asymptotic stability of an invariant set in the form of an interval [-y, y] can be ensured 
by the condition 

max If;(&r,{)Ic 1 
5EI-01 (2.10) 

In particular, if the function z(e) is symmetric about zero, increases monotonically for negative e, and 
l-kz(e)a 0 for all e, then from (2.9) and (2.10) we obtain the inequality 

7’(q) = -TTY) < My)/(Y~ + 6) 

3. LINEARIZATION OF DIFFERENTIAL INCLUSIONS 

We will obtain an analogue of Theorem 2.1 for the difference inclusion (1.2). Let S be a 
closed unit sphere in R”, and let h(X, Y) be the Hausdorff distance between the sets X, 
YcR”. 

Theorem 3.1. Let X,, be a stationary set of (1.2) and suppose that the condition 

liTb;up 6-‘h(X, , F( X0 + 6s)) < 1 (3.1) 

is satisfied. 
Then the set X0 is strongly asymptotically stable with respect to (1.2). 

Proof. It follows from (3.1) that o < 1 and 6, > 0 exist such that 

h(X@ F(X, + 6s)) s 06 (3.2) 

for all 0 c 6 < 6,. If (xi] is any solution of (1.2), and for some number j and 6j < 6, we have the 
inclusion .xj E X,, +6,S, then it follows from (1.2) and (3.2) that 

Xj+i E F(xj) C F(Xo + Sp) C X() + Osp 

Thus any solution of the difference inclusion (1.2) with initial condition x, =x0, d(x”, 
X0) < 6 s 6, satisfies the inclusion 

as was required. 
Theorem 3.1 directly extends Theorem 2.1. Indeed, under the conditions of Theorem 2.1 the 

inclusion 

holds, from which (3.1) follows. 
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Remark 3.1. It follows from the proof of Theorem 3.1 that the Hausdorff distance in (3.1) can be 

replaced by the function 

h+(X,Y)=inf{t*O: YCX+rs) 

giving the deviation of the set Y from the set X. 

Remark 3.2. In Theorem 3.1 the compactness of the set X, is not required in general, but for 
unbounded sets X, condition (3.1) is very restrictive. 

It would be natural to connect the assertion of Theorem 3.1 with some construction defining 
the derivative of a multivalued map (MM) F(.). Concepts of derivatives based on an approxi- 
mation to the graph of the MM at a point are not appropriate in this case for two reasons. The 
first is associated with the fact that, generally speaking, we are investigating the behaviour of a 
discrete system in the neighbourhood of an entire family of solutions rather than of a single 
(stationary) solution. The second reason is due to the tendency to investigate strong stability 
whereas the given constructions are obviously more suitable for obtaining weak stability 
conditions [lo]. 

The following result, based on the concept of the strong derivative of an MM [ll], is 
formally satisfactory. 

Theorem 3.2. Suppose that the MM F(,) is continuous and has convex compact values, and 
that X0 is a compact SS of (1.2). If the map F() is strongly differentiable at each point 
x0 E bdX, in any direction u E S, so that its derivative is continuous and its norm does not 
exceed some positive v < 1, then the set X0 is strongly asymptotically stable with respect to 
(1.2). 

Proof. The conditions of the theorem mean the following. For all x0 E bdXO and 2) E S there 
are convex compact sets F:(x’, u) and F:(x’, u) such that 

We put 

k(F:(x”,u),F_‘(xo,u))a v 

~~6-‘h(F(x”+6u)+6FI(xo,u),F(xo)+6F;(xo,u))=0 

p(x0,u,6)=h(F(xO+Gu)+SFl(x0,u),F(x0)+GF;(x0,u)) 

(3.3) 

Under the conditions of the theorem the function p(., ., ) is continuous and 

P*@) = ~O~n&P(xOl~~~) 

satisfies the condition &‘p.@) + 0 as 6 + 0. From (3.3) we obtain 

F(xn+6u)+GF_‘(x0,u)cF(x”)~GF:(x0,u)+p(x0,u,G)Sc 

C F(xn)+GF(x”,U)+6(v+6-1p,(S))S 

F(xn)+GF,‘(xO,u)cF(xO+6u)+6F_‘(xO,u)+p(xO,u,G)Sc 

C F(xO+6u)+GFJ(xO,u))+6(v+6-‘p*(6))S 

From this, using the stationarity of the set X, for all sufficiently small 6, we obtain the 
inclusions 

F(Xo + 6s) c X0 + &v + S-‘p,@))S, x0 c F(Xo + 6s) + 6(v + 6-‘p*@))S 

which are equivalent to (3.1). The theorem is proved. 

Example 3.1. Let X0 be an SS with respect to the inclusion 
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where f(.) : R" + R" is some continuously differentiable function, and E is a convex compact set. 

The MM F(x)= f(x)+E is strongly differentiable [12], and here F:(x’, U) = f’(x’)u, FJx’, u)= 0. It 

follows from Theorem 3.2 that the set X, is strongly asymptotically stable if the norm of the matrix f’(x) 

is less than unity for all points x E bdX,. 

The use of Theorem 3.2 to investigate the stability of SSs of difference inclusions impinges 
on the substantial problems produced by the excessive restrictiveness of the strong differenti- 
ability condition on an MM. For example, this condition is not necessarily satisfied by an MM 
of the form 

F(x) = {Ax: A E Q) (3.4) 

where SL is some convex set of (n x n)-matrices. This effectively devalues Theorem 3.2 because 
difference inclusions with a right-hand side of the form (3.4) happens to be the subject of 
investigation in robust stability theory for linear discrete systems. 

This difficulty can be overcome by relating the concept of the derivative of an MM to 
functions of the form (3.4). This enables one to justify a stronger assertion. The MMs (3.4) 
were considered in connection with the study of generalized Jacobians of non-smooth 
functions [13] and were given a generalization called a sheaf [14]. 

Definition 3.1 [15]. The MM D() : R” + R” is called a sheaf if 
1. the sets D(n) are non-empty, convex and compact; 
2. D(x’ +x2) c D(x’) + 0(x2), W, x2; 
3. D(k) = AD(x), vx E R”, h > 0; 
4. II D II= sup,k,,G1 supysocr, II y II< +m. 
The concept of a sheaf is used to define the prederivative of a non-smooth function [14, 151. 

One can proceed similarly for an MM. 

Definition 3.2. The sheaf D(.) = D’F( x0 is called an upper prederivative of the MM F() at , ) 
the point x0 if 

~~~lull-‘h,(F(~“)+D(u), F(xO+u))=O (3.5) 

is satisfied. 
The class of MMs which have upper prederivatives is fairly wide and includes, in particular, 

MMs which satisfy the Lipschitz condition. However, it is easy to give an example of a con- 
tinuous MM for which (3.5) is not satisfied by any sheaf D(.). For example, F(x)= [0, lxl”] 
does not have an upper prederivative at the point x = 0. 

One can formulate the following extension of Theorem 2.1 in terms of upper prederivatives. 

Theorem 3.3. Let X0 be a compact set which is invariant under (1.2), and let F(.) be a 
continuous MM which has a prederivative D’F(, .) continuous in the neighbourhood of 
(bdX,) x S. If for all x E bdX, II D+F(x, .) II< 1, then X0 is a strongly asymptotically stable set 
with respect to (1.2). 

The proof of this theorem is exactly the same as the proof of Theorem 3.2, and will not be 
given here. 

Exanzple 3.2. Suppose that X, is an invariant (stationary) set with respect to the different inclusion 

Xi+1 E D(Xi) + E (3.6) 

where D(.) is an MM of the form (3.4). It is obvious that at every point x the MM F(x) = D(x)+B has 

an upper prederivative which is identical with D(.) and IID+F(x, ~)ll=llD(~)II=max(llAII:A~Q}. The 

invariant set X, is thus strongly asymptotically stable with respect to (3.6) if II A II < 1 for all A E R. 
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Example 3.3. We consider the one-dimensional difference inclusion 

It can be shown that the intervals Xi = [-x1, x’] and X,’ =[-x2, x”] where x1* = (l*d(l-4~))/(2a), 

are SSs of the system under consideration, and that the interval X,’ is a minimal SS. I can also be 

established that 

D+F(x, U) = [-2axU, 2ccrU], IID+F(x, .)II = 2akl 

Hence, by Theorem 3.3, the set Xi is strongly asymptotically stable. The norm of the upper 

prederivative at the boundary points of the integral Xi is greater than unity, and this set is not stable. 

,This research was carried out with financial support from the Ukrainian State Committee for 
Science and Technology. 
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